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ABSTRACT
Mobile Agent systems have attracted considerable attention as
means of exploring and manipulating distributed information
sources. However, many existing multi-agent platforms present
limitations in terms of adaptability and scalability, indicating
difficulties when trying to replicate these results on a large scale.
We describe the core of a novel mobile agent toolkit known as
DIET, (Decentralised Information Ecosystem Technologies),
which addresses some of these limitations and provides a
foundation for an open, robust, adaptive and scalable agent
ecosystem. We introduce DIET core features and describe how
they support basic mobile agent capabilities such as migration and
real-time interaction. We then illustrate how an ecosystem-
inspired design approach differs from conventional design
approaches. Finally, we experiment with a simple information
retrieval scenario, demonstrating the emergence of agent
communities through the evolution of environmental preferences.
In this way we hope to clarify how applications built on this
foundation could be used to tackle problems in adaptable and
open real-world scenarios.

Categories & Subject Descriptors: I.2.11 Distributed
Artificial Intelligence, C.2.4 Distributed Systems, D.1.3
Concurrent Programming, I.2.6   Learning

General Terms: Algorithms, Management, Measurement,
Performance, Design, Reliability, Experimentation.

Keywords: Agent, Multi Agent System, Mobile Agent System,
Evolution, Group, Community, Ecosystem, Emergence

1. INTRODUCTION
Multi-agent systems have the potential to support complex real-
world applications in an open and extensible manner. However
specific implementations can often present problems of
scalability, robustness and adaptability [29]. The DIET
(Decentralised Information Ecosystem Technologies) project [3]
draws on analogies with ecosystem dynamics in an attempt to
address these limitations in recent work on multi-agent systems.
The main goal of the project is to implement and validate an agent

development toolkit supporting complex, real world applications,
such as the management of information sources like the Internet
or large scale intranets.

This paper introduces the core of the DIET toolkit, developed as
part of the DIET project. It also presents the results of a simple
experiment, built upon features of the core, in which agents adapt
their preferences to select execution environments most suitable
for their information retrieval needs.

1.1 Adaptivity and Scalability of Multi-Agent
Systems
Agent systems have attracted a great deal of interest and have
been focused on a wide variety of applications. This has led to the
construction of many different agent development toolkits.
Examples include ADEPT [16]; JAFIMA [7]; OAA [9];
RETSINA [22] and ZEUS [14].

ADEPT provides an agent-based workflow technology that
combines distributed object platforms with software agents to
manage business processes [16]. JAFIMA by contrast is a
comprehensive agent design framework for developers to develop
agents from scratch. It uses a layered agent architecture pattern to
form centralised cooperation and translation and shared mobility
layers [7]. OAA (Open Agent Architecture) provides an agent
architecture that can facilitate communication and cooperation
between agents by providing one or more facilitators [9]. OAA is
structured in an attempt to minimise the effort involved in creating
new agents and wrapping legacy applications. RETSINA is a
distributed collection of heterogeneous agents that develops agent
collaboration in information retrieval and integration tasks in a
reusable way [22]. ZEUS is another comprehensive agent building
toolkit that provides a library of agent-level components and an
integrated environment to design agent processes [14]. It
combines many established technologies, such as agent
communication language, reasoning, planning, ontology and
visualisation, to provide an integrated collaborative agent building
environment.

The above agent development frameworks, amongst many others
(e.g. [20]), have greatly improved the study and realisation of
collaborative multi-agent approaches and have been applied to
various application areas such as information management,
distributed resource allocation, and e-commerce. However, these
and other multi-agent systems have suffered to a greater or lesser
degree because of their closed nature in information discovery,
communication, ontology, reasoning, coordination and
monitoring, as identified by Nwana and Ndumu [15].
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Some multi-agent systems, such as OAA and JAFIMA, involve
much centralised design. This may incur a bottle-neck problem as
the agent population, the communication load and the information
in the system grows. Other systems like RETSINA and ZEUS, are
decentralised architectures in which distributed, heterogeneous
agents collaborate in performing tasks together. However, even in
agent systems with decentralised features the core
implementations of ’white pages’ and ’yellow pages’ services is
often centralised or suffers from scalability problems as more
agents and hosts are added. Some of these issues are addressed by
RETSINA in [27].

The co-ordination of agent systems often requires prior
knowledge from domain developers to carefully define the
functionality of individual agents, allowing the agent system to
deliver its functionality. Preconditions and post-conditions, for
instance, are key to the functioning of a rule-based planner in
ZEUS. In addition, each ZEUS agent coordinates with other
agents according to its predefined knowledge of others through
known protocols and interaction strategies. Multi-agent systems
designed in this way are able to function in a well-understood
world. But it is questionable whether predefined knowledge and
methods are sufficiently flexible when the environment is
dynamically changing. Such implementations can also be very
susceptible to failure. If some agents responsible for certain tasks
are inaccessible or information is unexpectedly absent, agents may
be unable to solve the problems themselves, and help must be
sought from the outside, i.e., the human designer.

In order to work properly, some systems assume an
oversimplified, static, deterministic world, whereas most natural
worlds are complex, dynamic, and uncertain [19]. In a complex,
dynamic real world context like the Internet or an intranet, for
example, information, computational resources and user presence
are transient in wholly unpredictable ways.

In an open agent system, it is impossible for developers to
anticipate agent behaviours, track all possible eventualities and
design corresponding optimal strategies beforehand. Sense, Plan,
Act cycles which are dependent on global models are
unsatisfactory; as the scale of the network increases, models
cannot be kept up to date, and planning becomes increasingly
intensive. For these reasons, multi-agent systems relying heavily
on the predictability of system behaviour or rational agent
behaviour cannot adjust themselves to dynamic changes, scale to
radically increased number of users and pieces of information, or
be robust to unexpected behaviours or failures in the system.

1.2 The DIET Philosophy
The DIET project [3] is concerned with the development of an
ecosystem-inspired approach to the design of agent systems [8], in
the hope of addressing some of the limitations mentioned above.
In this context an ecosystem can be viewed as an entity composed
of one or more communities of living organisms, in which
organisms conduct frequent, flexible local interactions with each
other and with the environment that they inhabit [23]. Although
the capability of each organism itself may be very simple, the
collective behaviours and the overall functionality arising from
their interactions exceed the capacities of any individual
organism. These higher level processes can be adaptive, scalable
and robust to changes in their environments [26].

Ecosystems have been a source of inspiration to a number of
previous developers of agent systems [e.g., 4, 12, 18]. Moukas
[12] employs ecosystem inspired ideas in the Amalthaea
architecture for information filtering. Van Parunak and colleagues
[18] have advocated a “Synthetic Ecosystems” approach to the
design of multi-agent systems, using the interaction of many
simple agents to solve problems, rather than sophisticated
processing at the individual agent level. Doran [4] provides a
contrasting view of ecosystem-inspired agent systems, using agent
models to assist in the management of natural ecosystems.

Inspiration from ecosystems is the focus for a number of ongoing
research collaborations. The information ecosystem concept [5]
draws a parallel between the emergent complexity of natural
ecosystems and the networks making up the global information
infrastructure (e.g., the Internet and Worldwide Web). The DIET
project aims to implement an information ecosystem populated by
information agents (or infohabitants, after [5]) drawing upon the
properties of natural ecosystems mentioned above.

We intend to exploit the dynamics of natural ecosystems,
composing applications from simple agents, distributed across
many execution environments. In each environment large
numbers of asynchronously executing software agents may be
created and maintained, (over 500,000 addressable DIET agents
can occupy the memory of a modest desktop PC). Agents share
the environment’s resources and interact together in a way that
loosely parallels the relationship of biological organisms with
their natural environment. In particular, they are capable of
autonomous migration between environments, providing a basis
for the dynamic creation of 'ecological' communities. These
communities can be heterogeneous and interdependent, and are
autonomously selected by participating individuals.

Agents can conduct communications with each other, exchanging
information or resources to deliver application objectives and
carry out system functions. We focus on the implementation of
lightweight agents with very simple behaviours, rather than
emulating the complex behaviours of sophisticated organisms like
human beings. DIET agents are lightweight and can respond
rapidly to new information with minimal processing. In this way,
the DIET platform provides a foundation for global information
management through the emergent effects of local cooperation,
offering a basis for ecosystem-inspired experimentation.

The rest of the paper is structured as follows. The next section
describes how the DIET philosophy has been put into practise.
We outline the architecture of the DIET core and identify some of
its key functions and components, before discussing in more
detail an example of its functionality - the communication
facilities between DIET agents. Section 3 describes an experiment
in which agents evolve habitat preferences in a transient Peer-to-
Peer network, improving the efficiency of information sharing.
Finally we discuss how these results illustrate the potential of the
DIET platform to overcome common limitations of multi-agent
systems in application to real-world problems.

2. IMPLEMENTATION
2.1 Architecture
DIET applications can be decomposed into three separate layers
providing an extensible framework for the exploration of
ecologically-inspired software solutions [8];
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Core layer : The functionality supported by the lowest layer is
deliberately minimal as will later be explained in more detail.

ARC layer : Additional utilities are distributed along with the
core, known as ARC or ‘Application Reusable Components’.
These provide primitives which exploit the minimal functions of
the core to support higher level activities common to many
applications. These include remote communication, multicasting
and directory services.

Application layer : This layer comprises additional data structures
and agent behaviours for application-specific objectives.

2.2 Core Layer Functionality
Like other Multi-agent systems a fundamental unit in any DIET
application is the Environment, which provides a location for
agents to inhabit and a number of services to support agent
activities. Each Java Virtual Machine [JVM] contains a single
‘World’ containing one or more environments. In turn, multiple
Worlds may run on a single computer, and multiple computers
may run concurrently within a network. The construction of the
core deliberately anticipates the scaling of the DIET ‘Universe’ to
an indefinite number of agents, environments and worlds.

The minimal functionality provided by the environment consists
of: 1) agent creation; 2) agent destruction; 3) agent migration; and
4) local communication. These four key functions are executed
with minimal overhead (e.g. memory, processor and network
overhead). Specifically, the CPU load of each primitive service is
not systematically dependent on the number of individuals
occupying the environment, allowing environmental service
requests to return rapidly even in well-populated environments.
This allows efficient and scalable operation of the system.

In many MAS projects the majority of processing is expected to
take place through individual agents executing decision
algorithms. By contrast, DIET information processing is expected
to take place through the interactions between simple agents,
demanding highly efficient implementations of the core services.
We believe that these four operations are the minimum required
for a mobile agent system, and that any further functionality
required can be efficiently built on this foundation.

2.3 Communication
The impact of the design philosophy and organisational structure
of the DIET agent system is well illustrated by examining the
support for agent communication offered by the different layers.

Local communication is offered as a core layer service. This
function is implemented as a direct connection between agents in
the same environment. Although this core functionality is
minimal, extra services, such as remote communication across
different environments, can be delivered as a service by
specialised agents, using only the four 'core' functions above.

2.3.1 Local Communications – A Core Feature
The core layer provides support for communication only between
local agents. We define local communication as the passing of
messages and objects between two agents occupying the same
environment. This implies that they occupy the same machine.
The following sections describe briefly the issues considered in
our implementation.

2.3.1.1 Identities and Indexing
In order to start communicating, the initiating agent must first
specify the target individual with which it wants to interact. An
agent can be identified in one of two ways.

Each agent is assigned a unique binary ‘name tag’ randomly
generated within its originating environment. Given a random
bitstring of sufficient length, identity clashes are incredibly
unlikely. Hence this unique identifier can be employed to
distinguish a single agent throughout its lifetime, and it is retained
following migration to different environments.

In addition, on startup, each agent may select a ‘family tag’ of its
own choosing. It is expected that this tag would be used to reflect
the services that it offers. Duplication of family tags is expected.
Where more than one individual of the requested family exists,
one of them is returned at random.

The decentralised naming approach in the core platform avoids
the limitations inherent in centralised, synchronised name servers.
No forms of universal addressing, wildcard indexing or
exhaustive lists are supported, ensuring the rapid return of
connection requests with a CPU cost on average independent of
the number of occupants. This also ensures the scalability of the
DIET 'universe' to indefinitely many machines - only local
indexes exist in each machine, allowing the rapid retrieval of a
single agent within its own environment by either name tag or
family tag. If no appropriate agent exists in the environment, the
service returns rapidly with a failure code. Rapidly-executing
synchronised code allows the integrity and accuracy of the
environment’s local indexes to be maintained under all
conditions, and minimises delays to agents sharing the index.

2.3.1.2 Connections
Once the target agent is identified, a ‘connection’ is created
allowing the two individuals to dispatch messages asynchronously
into each others' buffers. There is a superficial advantage to the
provision of limitless message buffers since agents do not need to
handle message failure. However, without memory constraints,
the system may crash unexpectedly. Furthermore, an agent with a
large message backlog cannot respond in a timely fashion to
incoming messages, reducing its effectiveness in a real-time
system. For these reasons message buffers are deliberately
constrained. The idea of putting a strict limit on certain resources
is used throughout the DIET core. It makes high system load
visible to agents, encouraging them to modify their strategies in
response to prevailing conditions.

Instant feedback is always available to determine whether a given
connection is alive (the agent exists), and whether a
communication has completed successfully (the message has been
successfully placed in the target buffer). Once a connection has
been created, direct memory references can be used to avoid any
form of lookup, eliminating the bottleneck of synchronised
indexes. Long term connections can thus be retained between
commonly interacting individuals, minimising costs. When either
agent migrates or dies, local connection records permit automatic
notification of the other agent, allowing it to modify its behaviour.

To maximise the efficiency of agent strategies, a transaction state
object known as a ‘Context’ is made available whenever a
message arrives or disconnection event takes place. A distinct
'Context' is associated with each participant in a connection.
Context objects may take whatever form the agent designer feels
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appropriate to maintain transaction state. They offer an efficient
means of handling multiple transactions concurrently, since they
are directly referenced by the connection, also avoiding lookup.

In addition to communication of local agents, exploiting
decentralised information and computational resources depends
upon information exchange between DIET environments. In order
to achieve this, remote communication is required.

2.3.2 Remote Communication – An Extended Service
A variety of mobile agent addressing strategies can be explored to
achieve remote communication, including centralised indexes,
forwarding pointers, home agents and other agent tracking
strategies [11]. However, there is no explicit support for such
strategies in the core. Instead, the DIET system provides multiple
forms of remote communication through ARC and application
layer extensions, exploiting a variety of strategies to suit different
applications and scenarios. These forms of remote communication
include Carrier Pigeon, Mirror and Mirror Provider.

Simple, one-off remote communication can be implemented by
creating a ‘Carrier Pigeon’ agent which migrates to a remote
environment and employs local communication to deliver a
message to the addressee.

The complexity of managing ‘Carrier Pigeons’ can be eliminated
by the creation of a local ‘Mirror’ agent.  Mirrors provide a
communication channel to a remote individual, and employ
Carrier Pigeons to achieve their function. An agent in
environment A can interact with a local mirror as if it were the
individual in environment B. The individual in B in turn interacts
with a local mirror as if it were the agent in environment A. In this
way, remote communication is transparent to both participants.
Furthermore, it provides a level of indirection in the creation of a
Carrier Pigeon. Individuals are no longer responsible for creating
Carrier Pigeons directly. Thus, alternative Carrier Pigeons with
alternative behaviours may be substituted at runtime to improve
the efficiency or reliability of remote communication.

The use of a Mirror is a very flexible arrangement, demanding
very little of the participants. The mirrored communication can be
initiated by either agent, or even by a third agent if necessary,
catalysing interaction between agents in different environments
for their own ends. Intermediation of the network transport layer
is discernable only implicitly, through the delays between
dispatch and response.

In addition, Mirror Providers may be introduced which construct
Mirrors at the request of an agent. In this way, the exact behaviour
of the Mirror used may be exchanged without the knowledge of
the initiating agent. The choice of underlying network transport,
and strategies for handling failure modes may be modified. This
form of soft addressing allows very simple agents to benefit from
the latest innovations available, without explicit awareness of the
range of implementations.

All ‘Carrier Pigeons’, ‘Mirror Agents’ and ‘Mirror Providers’ are
included within the ARC layer of the core distribution. Further
service agents are also available at this stage, including
multicasters which handle the complexities of multicast
communications, directory agents which allow arbitrary
information to be publicised to interested agents, and other
fundamental services.

2.3.3 Generalising Service Provision by Agents
The above sections introduced the design philosophy behind the
DIET platform, i.e. how to design and implement fundamental
functions (e.g. local communication) and how to extend these
functions to achieve higher level services (e.g. remote
communication). The idea of efficient, robust, scalable and
flexible implementation runs through the whole platform.
Developers may choose to employ primitives offered as part of the
DIET distribution, or create new implementations that are better
suited to their purposes. However, the differences between
implementations do not need to be explicitly externalised in the
form of metadata. Instead, complex, manifold functions may arise
from different combinations of simple agent behaviours. The
experiment detailed in the next section indicates one way in which
agents can select clients, peers or service providers through
implicit performance measures.

3. EVOLVING GROUP FORMATION
To illustrate how the DIET system can be applied to information
ecosystems, we describe here an experiment into group formation
within the DIET world, which uses an evolutionary algorithm to
evolve each individual’s habitat preferences, hence implicitly
choosing the combinations of peers with which it interacts in
order to improve its performance in information retrieval.

The dynamic formation of communities of agents could be very
important for the proper exploitation of computational and
informational resources in future networks. The mutual
relationships formed by organisms in nature have been
characterised by some as the primary influence in increasing
adaptive complexity over evolutionary time [10]. In nature many
partnerships arise without the rational negotiation which is
characteristic of classical agent-based systems. Group formations
simply persist and propagate where their collective strategy is
competitive with other individuals and groups in their
environment. No metadata or centralised coordination is required.

The most rapid and efficient interactions between agents are those
that take place locally, between agents occupying a single
environment. Occupying a common environment can thus provide
advantages analogous to those gained by firms forming industrial
clusters [1]. Examples include: improved communication
efficiency; improved access to directory and other system
services; specialisation of local services, and more rapid
information propagation. The following experiment is intended to
illustrate these advantages.

3.1 An Information Sharing Network
The scenario for experimentation is focused on the formation of
collaborative information-sharing communities. We imagine a
peer to peer network of transient users connecting to the network
in order to identify resources which satisfy their information
needs. Each user has an associated 'category of interest'. Users of
the same category are interested in the same set of information,
but initially only have access to a subset. Thus, it is in their
interest to find other users of the same category and share
information with them. Each user creates a DIET environment,
within which Scout agents can be created. The agents then
migrate through the peer network in search of other Scouts
serving users of the same category.
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When a new user connects a locally running DIET environment to
the peer network, both the availability and the demand for
computational resources increases. Availability and demand in the
network as a whole can be considered proportional to the number
of participants in the peer network.

It is important, as previously mentioned, for agents that interact
frequently to be co-located. However, since there are no
permanent servers in the network, (in a peer network all
environments may be transient), it is not possible to decide upon a
permanent home address for specific user groups, (groups denoted
by a category of interest). In this experiment, we exploit the
evolution of habitat preference to permit agent populations to
accommodate these changing circumstances.

3.1.1 Scout Life Cycle
The Scout life cycle is divided into 3 phases: the Exploratory
phase, the Sharing phase, and the Reporting phase.

In the Exploratory phase, a scout visits 8 environments in a
random walk, and requests 4 neighbouring addresses from each
environment, selecting at random for the next hop. These numbers
are fixed for all experiments to allow comparison across peer
networks of different sizes. After collecting the 32 environment
addresses, (some of which may be duplicates), the scout applies
its preference function to calculate a satisfaction value for each of
the 32 potential hosts encountered (each scout’s preference
function is based upon an evolved bitstring – its genome - as
explained later). It then selects a host - the environment address
that gives it the highest satisfaction. Where several addresses have
the same satisfaction, the most recently visited environment is
preferred. The scout then enters the Sharing phase.

During the Sharing phase, the scout migrates to its preferred host,
and spends a pre-determined period interacting with other scouts
in the environment - notifying them of its user's id, and his/her
category of interest, and noting the others' ids and categories.
Then it moves to the Reporting phase.

In the Reporting phase, the scout returns to its originating
environment, notifies the user of its genome, and the number of
successful encounters achieved. Although the scout destroys
itself, its genome survives, and may be selected as a parent in the
future according to its success. Scout Success is measured
according to the number of Scouts encountered that belonged to
different users, but represented the same information category.

3.2 Habitat Preferences

3.2.1 Preference Function
Each environment in the peer network has a distinctive signature -
a hashcode, generated based on the environment’s address within
the DIET World. We currently use a 32 bit hashcode, since a
unique hashcode of this form can be acquired from all Java
objects. However, this form of hashcode could be replaced by one
of many different hashing schemes if required e.g. [13].

The satisfaction function of Scouts employs two bitstrings of
length 32, (drawn from a binary genome containing 64 bits),
known as the XOR_mask and the AND_mask. To determine the
degree of satisfaction for a given environment, the environment‘s
hashcode is XORed with the XOR_mask, then ANDed with the
AND_mask. The number of set bits (i.e. bits with value "true"),
then indicates the degree of satisfaction with the environment.

3.2.2 Evolutionary Algorithm
Each User manages an independently evolved population of scout
genomes. Scouts are bred by Users to maximise Scout Success via
a Steady State Genetic Algorithm [21]. A scout's preference for
hosts is determined by a bitstring 'genome' provided at birth. In
this way scout preferences evolve over many generations in
response to the conditions they encounter in different
environments. The operators employed to evolve the populations
of Scout agents, drawn from the Eos evolutionary and ecosystem
platform [2], were tournament selection, two-point crossover,
uniform mutation and random replacement.

When dispatching new Scouts, the User uses tournament selection
to choose parent genomes from his/her population, favouring
genomes according to 'Scout Success'. Individuals are initialised
with a success of zero.

The parents' genomes are recombined, creating two new genomes.
These new scouts are released into the user's local environment,
beginning the three phase life cycle described earlier. If they
complete their life cycle, and return successfully, an existing
member of the population is replaced at random by the genome of
the returning scout.

3.2.3 Distribution of Scouts
Figure 2 shows a illustration of what a resulting information
sharing network could look like.  In this network, there are ten
scout agents representing two categories of interest. The edges of

the graph represent neighbourhood links between environments,
provided as an explicit feature of the DIET core implementation.

In this information sharing network, the unshaded scout agents
have chosen to cluster at the environment with hashcode 0101.
The shaded agents preference is equivalent for both environments
1011 and 1010, hence they distribute themselves evenly.

The relaxed preference of the unshaded group may be to their
advantage, since the processor load of a less populated
environment can help them execute their information search more
rapidly. However, there is a tradeoff since there are fewer agents
with which to share information in less populated environments.
One of the benefits of using evolution, and selecting according to
Scout performance is that these tradeoffs can be optimised
implicitly, according to the performance of each individual agent,
without central management.

1010

Figure 2: An example of an information sharing network
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3.2.4 Emulating User Behaviour
Each User hosts a single DIET environment, enabling the creation
and dispatch of his/her own Scout agents into the peer network to
retrieve information, as well as providing an environment for
interactions between incoming Scouts.

In constructing the peer network, pairs of environments are
chosen at random and directed neighbourhood links are created
between them, permitting agents to transit between the selected
environments. This is intended to reproduce the connectivity of a
fully decentralised peer network. On average, each has 4 links.

A series of experiments were run, testing the behaviour of the
algorithm for a variety of network sizes. To date, it has been
tested for 2, 4, 8, 16, 32, 64 and 128 users. For the sake of
logging, all environments were actually hosted in parallel on a
single machine. To compensate, user search intervals, scout
waiting time, and overall run length are proportional to the

number of users. We  provide a minute of CPU time for each
user’s activities - a specification consistent with the peer to peer
scenario of Section 3.1. Each user begins the simulation with a
fixed category of interest, and a personal population of 100 Scouts
with random genomes, (defining random preference functions).

3.3 Results
To examine the behaviour of evolving preferences, we have taken
logs of asynchronous agent interactions within a DIET system.

The purpose of the experiment was to demonstrate that agent
behaviour could be tuned to improve performance in a real-time
application scenario. The population in each environment,
(number of Scouts), against time (milliseconds) is shown in
Figures 3 to 5 for typical experiments. The average Scout Success
for each User, (number successful interactions), against time
(milliseconds) is shown in Figures 6 to 8 for typical experiments
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Finally, the plot in Figure 9 shows the average scout success level
(y-axis linear scale) against the number of users (x-axis, log
scale). These results are averaged over 10 experiments.
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Figure 9 Average Scout success after 1 min CPU per User

4. DISCUSSION
In the cases shown, (Figures. 3 to 9), all Users are of the same
information category. That is, all users benefit from sharing with
all other users. This simplifies the scenario and makes the results
of convergence easier to interpret. In a more diverse agent system,
more than one population can develop its own specialised
"industrial cluster", converging on environmental preferences
shared only with members of its own community - leading to load
balancing across multiple environments.

As can be seen from the plots of Scout population, (Figures 3 to
5) the randomised scouts adopt a roughly uniform distribution
across all available environments, at the start of each run.
However, as time goes on, Scout’s host preferences converge on a
single environment, or a small subset of environments.

This phenomenon can be straightforwardly explained as a case of
positive reinforcement. If the environment selected by a Scout
hosts many other Scouts of the same category, it will be more
successful in its information sharing mission. Choosing a popular
environment is the only way to achieve a selective advantage,
favouring scouts whose preferences intersect with other scouts of
the same category.

Minor asymmetries arise naturally from the stochastic processes
and real-time artefacts in the system. Once an asymmetry exists,
this asymmetry is amplified through positive reinforcement as the
sexually independent populations experience increasing density
within specific environments. For this reason, Scout populations
whose Users have common interests will converge to common
environment preferences.

As the number of users in the system grows, the scouts distribute
themselves over a larger number of environments as in  Figure 5.
This is explained when we recall that scouts in all experiments
sample 32 environments before choosing a host. In the 8-user
case, it is likely that scouts will encounter all 8 environments
during exploration. Readers may note that in this case a single
environment is independently selected by all co-evolving scout
populations as the preferred environment. However, as the
number of environments increases, it becomes increasingly likely

that scouts will only encounter a subset of available environments
and users. Despite this limited knowledge, preferences still
converge strongly from the initial uniform distribution.

The co-existence of multiple communities may actually provide
additional robustness, since the loss of specific machines, or
groups of machines is unlikely to eliminate all members of a
specific agent community in a sufficiently large network. Load
balancing could also be implicit in this behaviour - data suggests
that not all Scouts will choose the same host in a large network.

The key indicator is, of course, the improvement in Scout
performance. A strongly positive trend in scout success is clear in
the experimental scenarios (Figures 6 to 8). It is crucial to
examine how this benefit scales with the user population.

However, the results shown in Figure 9 raise some concerns.
There is a noticeable downturn in Scout performance as the
number of Users increases. It is possible that competing
conventions for environment selection remain for longer, since
less information is available about global host adoption for a
given category. This may prevent convergence on a single
environmental preference in the period of time allowed. Other
influences may be responsible for this tailoff, such as the
overhead of scheduling or synchronising up to 1000
simultaneously executing agents in a single machine.

Further experimentation will be undertaken shortly using multiple
computers (in a 32-processor Beowulf cluster [24]), to implement
true parallelism. This could help reduce artefacts from thread
scheduling, and also permit the construction of larger peer
networks. The use of the cluster further allows the robustness of
the DIET core and the evolved preference strategy to be tested by
arbitrary machine shutdowns.

The experiments in evolving group formation that we have
implemented in the DIET platform further confirm its suitability
for providing scalable and adaptive solutions to information
management problems. Starting from a random initial assembly of
users, agents quickly and efficiently group according to the
interests of their respective users. This facilitates more rapid and
effective communications between users with common interests,
and so show the potential for application to more general peer-to-
peer collaborative networks [17].

Finally, this application offers an ideal use case for the DIET
visualisation toolkit, currently under development at DFKI, which
is intended to support the online exploration of complex agent
interactions [28].

5. CONCLUSIONS
In this paper we have identified some shortcomings of existing
agent systems in terms of lack of scalability and adaptability, and
so provided a justification for the construction of a novel toolkit,
the DIET platform, that is lightweight, scalable and decentralised.

The design philosophy and several specific features of the DIET
core have been introduced, with a focus on the generality of the
implementation, and the extensibility and flexibility of service
provision. Examples have been provided indicating the ways in
which the minimal core functionality is extended through the
contribution of specialist agents.
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We have shown through experiments that evolution can be used to
co-ordinate cooperative interactions between self-interested
agents in fully decentralised, transient peer-to-peer information
sharing networks. In particular, we have shown that groups of
agents with common interests, akin to "industry clusters" [1], can
emerge by evolving agents’ host preferences without any explicit
planning, or any centrally agreed locations.

We are confident that the DIET agent toolkit offers a substantial
experimental foundation for ecologically inspired algorithms in
distributed information processing.
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